Begin of page section:
Page sections:

  • Go to contents (Accesskey 1)
  • Go to position marker (Accesskey 2)
  • Go to main navigation (Accesskey 3)
  • Go to sub navigation (Accesskey 4)
  • Go to additional information (Accesskey 5)
  • Go to page settings (user/language) (Accesskey 8)
  • Go to search (Accesskey 9)

End of this page section. Go to overview of page sections

Begin of page section:
Page settings:

English en
Deutsch de
Search
Login

End of this page section. Go to overview of page sections

Begin of page section:
Search:

Search for details about Uni Graz
Close

End of this page section. Go to overview of page sections


Search

Begin of page section:
Main navigation:

Page navigation:

  • University

    University
    • About the University
    • Organisation
    • Faculties
    • Library
    • Working at University of Graz
    • Campus
    Developing solutions for the world of tomorrow - that is our mission. Our students and our researchers take on the great challenges of society and carry the knowledge out.
  • Research Profile

    Research Profile
    • Our Expertise
    • Research Questions
    • Research Portal
    • Promoting Research
    • Research Transfer
    • Ethics in Research
    Scientific excellence and the courage to break new ground. Research at the University of Graz creates the foundations for making the future worth living.
  • Studies

    Studies
    • Prospective Students
    • Registration for Study Programme (Winter semester 2024/25)
    • Students
  • Community

    Community
    • International
    • Location
    • Research and Business
    • Alumni
    The University of Graz is a hub for international research and brings together scientists and business experts. Moreover, it fosters the exchange and cooperation in study and teaching.
  • Spotlight
Topics
  • StudiGPT is here! Try it out!
  • Sustainable University
  • Researchers answer
  • Work for us
Close menu

End of this page section. Go to overview of page sections

Begin of page section:
You are here:

University of Graz Theoretical Solid State Physics News Licht im Luftloch
  • Solid State Physics
  • Electronic structure of nanomaterials
  • Theoretical Nanophysics
  • Nano and quantum optics
  • Team Solid State Theory
  • Institute of Physics

End of this page section. Go to overview of page sections

Thursday, 09 February 2023

Licht im Luftloch

Regenbogenfarben, vertikal nebeneinander, von Orange bis Grün

Vielen modernen Anwendungen liegt die Manipulation von Licht auf der Nanoskala zugrunde. Ein Team von Physiker:innen unter Beteiligung der Uni Graz hat eine Methode entwickelt, die einen breiteren Spektralbereich als bisher nutzbar macht. Foto: pixabay

Innovative Methode der Nano-Optik eröffnet neue Möglichkeiten für Sensorik und Halbleiter-Industrie

Ob Halbleiter-Chips oder optische Sensoren – vielen modernen Anwendungen liegt die Manipulation von Licht auf der Nanoskala zugrunde. Ein internationales Team von Physiker:innen unter Beteiligung der Universität Graz hat nun eine neuartige Methode entwickelt, die einen breiteren Spektralbereich als bisher nutzbar macht. Dazu sperren sie Licht in Luftlöcher. In diesen Hohlräumen lassen sich außergewöhnliche optische Eigenschaften nutzen. Die Forschungsergebnisse wurden im renommierten Fachjournal Nature Light, Science & Applications publiziert.

In Forschung und Technik werden Wechselwirkungen zwischen Licht und Materie gezielt manipuliert, um Schwingungen mit ganz bestimmten Wellenlängen – sogenannte Resonanzen – hervorzurufen oder zu verstärken. Dies geschieht mit Hilfe von Nanostrukturen aus Metallen oder Halbleitern wie Silizium. Da diese Materialien die Lichtwellen zum Teil absorbieren, können aber nicht alle Frequenzbereiche genutzt werden. Wissenschaftler:innen der Universitäten Graz und Stuttgart sowie der Australian National University in Canberra haben einen Weg gefunden, das Problem zu lösen. „Wir stellen durch lithografische Verfahren Luftlöcher in einem Würfel aus Silizium her und sperren Licht in diese Hohlräume. Da Luft die Schwingungen der Photonen nicht absorbiert, eröffnen sich viele neue Möglichkeiten in einem breiten Frequenzspektrum“, berichtet Thomas Weiss, Professor für Theoretische Nanophysik an der Uni Graz.

Mit diesem Verfahren lassen sich auch Metaoberflächen, also ultradünne Filme bestehend aus solchen Löchern, für den ultravioletten Bereich bauen, was für die Halbleiter-Industrie ebenfalls von enormer Bedeutung sein kann. Denn die Strukturen von Chips, die in fast allen modernen elektronischen Geräten zum Einsatz kommen, erfordern in der Herstellung Abbildungssysteme für sehr kurzwelliges Licht im ultravioletten Bereich. Auch für die Entwicklung optischer Sensoren sind die Forschungsergebnisse interessant. Viele Moleküle werden durch UV-Licht angeregt. Wenn es gelingt, diese Wechselwirkung entsprechend zu verstärken, können Sensoren selbst einzelne Moleküle detektieren. „Mie-Voids – so nennen wir die resonanten Hohlräume, in die wir das Licht sperren – werden den Betrieb funktionaler Metaoberflächen in den blauen und UV-Spektralbereich vorantreiben“, ist Thomas Weiss überzeugt.

Publikation:
Dielectric Mie Voids: Confining Light in Air
M. Hentschel, K. Koshelev, F. Sterl, S. Both, J. Karst, L. Shamsafar, T. Weiss, Y. Kivshar, and H. Giessen
Nature Light: Science & Applications, 1. Jänner 2023
https://doi.org/10.1038/s41377-022-01015-z

Nature Photonics, „News & Views", Februar 2023

Eine 180 Mikrometer breite Reproduktion eines Gemäldes von Kandinsky, abgebildet neben einem menschlichen Haar {f:if(condition: '', then: '©')}
Durch optische Resonanzen von Löchern in Silizium entstand diese 180 Mikrometer breite Reproduktion eines Gemäldes von Kandinsky. Hier abgebildet neben einem menschlichen Haar. Foto: M. Hentschel
created by Gudrun Pichler

Related news

Bend as you please

Geometry is key to the optical properties of plasmonic nanoparticles. Except when it isn’t.

iSCAT for all

Scientists from Graz and Wien develop simulation software for interferometric scattering microscopy

Quantum research: Images provide a better understanding of light and matter

An international team of researchers has been able to take photos of a special specimen from the world of quantum research for the first time: the exciton. The findings are to be used to generate even more electricity from sunlight using innovative photovoltaic systems.

Mie in a cylinder

Special functions beat ray-tracing: a problem in optics that can be (just barely) solved analytically

Begin of page section:
Additional information:

University of Graz
Universitaetsplatz 3
8010 Graz
Austria
  • Contact
  • Web Editors
  • Moodle
  • UNIGRAZonline
  • Imprint
  • Data Protection Declaration
  • Accessibility Declaration
Weatherstation
Uni Graz

End of this page section. Go to overview of page sections

End of this page section. Go to overview of page sections

Begin of page section:

End of this page section. Go to overview of page sections